
Explaining the Behavior of Reinforcement
Learning Agents using Association Rules

Zahra Parham1, Vi Tching de Lille2, and Quentin Cappart1

1 Ecole Polytechnique de Montréal, Montreal, Canada
{zahra.parham,quentin.cappart}@polymtl.ca

2 StockholmSyndrome.ai, Montreal, Canada
vitching@stockholmsyndrome.ai

Abstract. Deep reinforcement learning algorithms are increasingly used
to drive decision-making systems. However, there exists a known tension
between the efficiency of a machine learning algorithm and its level of
explainability. Generally speaking, increased efficiency comes with the
cost of decisions that are harder to explain. This concern is related to
explainable artificial intelligence, which is a hot topic in the research
community. In this paper, we propose to explain the behaviour of a deep
reinforcement learning algorithm thanks to standard data mining tools,
i.e. association rules. We apply this idea to the design of playing bots,
which is ubiquitous in the video game industry. To do so, we designed
three agents trained with a deep Q-learning algorithm for the game Street
FighterTurbo II. Each agent has a specific playing style. Our experiments
show that association rules can provide interesting insights on the be-
havior of each agent, and reflect their specific playing style. We believe
that this work is a next step towards the explanation of complex models
in deep reinforcement learning.

Keywords: Association Rules · Explainable Reinforcement Learning

1 Introduction

Multiplayer video games refer to video games that involve more than one person
playing together at the same time, either as a team (cooperative game) or as an
opponents (competitive game). In such games, the interactions between players
are of the utmost importance and must be carefully designed in order to make
the game enjoyable. However, ensuring and maintaining proper interactions all
throughout the playing session is a hard goal to achieve in practice. First, enough
people must be available to play the game, and second, people must remain
active until the end of the game. Besides, the more people are involved in the
game, the more difficult it is to ensure these goals. For instance, each session of
the massively-played game Leagues of Legends is roughly about 30 minutes and
involves 10 players, split into 2 teams. Having only one player leaving the game
deteriorates general satisfaction, especially for the impacted team.

A natural solution to this issue is to integrate artificial agents, dedicated to
mimic the behaviour of human players. Such agents are commonly referred to as

2 Z. Parham et al.

bots. When a person is missing or leaves the game before the end, the bot will
replace the player. Despite the simplicity of this idea, building believable and
fun-to-play bots is a non-trivial task: they must be developed specifically for
each game and their behaviour in the game must remain realistic for the other
players. An additional asset is to be able to replace the player with a bot having
a similar playing style as the replaced player in order to smooth the transition.
Albeit possible and already used by big video game companies, building efficient
and human-like bots are generally beyond the range of independent studios with
limited resources. It is why an innovative way to program bots should be de-
signed. The requirements are as follows: the approach should be (1) generic,
meaning that it must be possible to use the approach for different games, (2)
credible as it should mimic a human behaviour, and (3) transparent, in the sense
that a developer must be able to understand the rationale behind the actions of
the bot and to re-calibrate it if required.

In another context, reinforcement learning [23] has been successfully applied
to various kinds of video games in combination with deep learning [13], imitation
learning [18], and league-style training, such as for Dota 2 [3], Minecraft [8], or
Doom [11]. The idea is to let the bot plays the game, reward it when appropriate
actions are performed, and use this reward as feedback to train the agent. Once
trained, the agent can then be used for new sessions of the game. Provided that
the learning was successful, good performances from the bot are expected. There
exist in the literature a plethora of learning algorithms that can be used in this
context. Notable examples are DQN [17], PPO [22], DDPG [15], or SAC [9]. From
an industrial point of view, the main benefit of this approach is that the training
algorithm is generic, only the definition of the environment changes from one
game to another. This directly ensures the first requirement about the genericity
of the approach. However, the requirements on the credibility and transparency
remain unaddressed. Broadly speaking, these concerns are related to explainable
artificial intelligence [5]. It must be possible to understand and trace why specific
predictions are performed by a model. By doing so, the confidence and that
we can have in the model is increased. This aspect is critical for many real
applications, such as in healthcare [19]. Although widely studied for supervising
learning approaches [4], there are fewer methods dedicated to explainability in
reinforcement learning [20], and even less that are applied on the video game
industry [16].

Based on this context, we propose to use data mining tools, such as associ-
ation rules [2], in order to provide meaningful information that can be used to
infer explanations about decisions carried out by reinforcement learning agents.
It is done as follows: when the agent is deployed on a game, it generates sam-
ples consisting of a set of observations and of the decision that it has carried
out. The proposed idea is to use association rule mining tools in order to de-
tect which components of the observations are highly correlated with specific
decisions. Then, we can deduce that these observations are features that often
trigger the decision. We evaluate this idea on the 2-players competitive game
Street Fighter Turbo II. We trained three agents for this game. Each of them

Explaining the Behavior of Reinforcement Learning Agents 3

(a) Action: jumping (Player 1 - red). (b) Action: punching (Player 2 - yellow).

Fig. 1: Illustrations of Street Fighter Turbo II game.

is characterized by a specific playing style (aggressive, defensive, and balanced)
and has been trained accordingly. The mined rules that we computed from mil-
lions of samples obtained from each agent show that we can discriminate each
agent by its playing style and thus explain their behavior.

The structure of the paper is centered on this case study. The next section
presents the nature of the game and the preprocessing steps that have been done
to build the environment. Then, Section 3 formally describes this environment
in order to be leveraged in the subsequent section by the reinforcement learning
agent. The rule extraction methodology is then explained in Section 5. Finally,
Section 6 presents the rules that we obtained for each agent.

2 Case study: Street Fighter Turbo II

Street Fighter II Turbo is a competitive fighting game released by Capcom for
arcades in 1992. Briefly, the game features two opponents. The goal of each is to
deplete the health of the opponent before the timer expires. The winner is the
surviving player or, in case of timeout, the player having the most remaining
health. To do so, each player can perform a variety of actions, such as moving
forward, moving backward, jumping, crouching, kicking the enemy, etc. Illustra-
tions of the game interface with three actions are proposed in Fig. 1.

From the point of view of a human player, actions are performed thanks to
a predefined combination of keys on a keyboard. By limiting the combination
to at most 2 keys as proposed in [6], we consider 21 different actions. They are
summarized in Table 1. The raw environment of any video game is the visual
frames displayed to the player, i.e., a grid of pixels. Although such an input can
be successfully leveraged by deep learning architectures, i.e., thanks to a convo-
lutional neural network [14], it does not give an input that is understandable by
humans. For such a reason, the first step is to pre-process the visual frames and
to translate them into a set of high-level features. To do so, we used BizHawk

4 Z. Parham et al.

emulator3 to obtain low-level information located in the RAM and related to
a specific state of the game. Among the many features in the RAM, we have
extracted the following features, with the possible values they can take, sum-
marized in Table 2. As we can see, we have 15 different features, 6 of them are
related to a specific player, and 3 of them relates to both players.

Table 1: List of available actions.
Action name Description
movingForward The agent walks in the forward direction
movingBackward The agent walks in the backward direction
jumping The agent jumps straight up
jumpingForward The agent jumps in the forward direction
jumpingBackward The agent jumps in the backward direction
jumpingWithKicking The agent jumps in the forward while kicking the opponent
neutralJumpingStrong The agent punches medium while jumping
farStandingRoundhouse The agent kicks hard while standing far
farStandingFierce The agent punches hard while standing far
farStandingJab The agent punches light while standing far
farStandingShort The agent kicks light while standing far
farStandingForward The agent kicks high side while standing
crouchingShort The agent kicks low while crouching
crouchingForward The agent kicks with good reach while crouching
crouchingStrong The agent punches medium crouching
crouchingJab The agent punches light while crouching
crouchingFierce The agent punches hard while crouching
crouchingRoundhouse The agent kicks hard while crouching
sitDown The agent sits down in place
sitBackward The agent walks in the backward direction while siting down
idling The agent stays in place without doing any action

3 Definition of the Environment

The first step in reinforcement learning is to define an environment as a Markov
Decision Process (MDP). Briefly, let ⟨S,A, T,R⟩ be a tuple representing a de-
terministic and fully observable environment, where S is the set of states, A the
set of actions that an agent can perform inside the environment, T : S ×A → S
is the transition function leading the agent to another state, and R×S×A → R
is a function rewarding (or penalizing) the realization of an action a ∈ A. The
behaviour of an agent is defined by a policy π : S → A, indicating the action
to be performed on a specific state. The goal of an agent is to learn a policy
maximizing the accumulated reward during its lifetime, defined as a sequence of

3 https://github.com/TASEmulators/BizHawk

Explaining the Behavior of Reinforcement Learning Agents 5

Table 2: Summary of the observations used to create the environment.
Observation name Domain Description
isMoving(p) {0, 1} Indicate if the player p is currently moving
isCrouching(p) {0, 1} Indicate if the player p is currently crouching
isJumping(p) {0, 1} Indicate if the player p is currently jumping
horizontalCoord(p) [0, 498] The horizontal coordinate of player p
verticalCoord(p) [0, 204] The vertical coordinate of player p
horizontalDelta(p1, p2) [0, 189] The horizontal distance between player p1 and p2
verticalDelta(p1, p2) [0, 158] The vertical distance between player p1 and p2
health(p) [0, 176] The remaining health of player p
remainingTime [0, 99] The time until the end of the game (99 seconds in total)

states st ∈ S with t ∈ {1, . . . , θ}. This is commonly referred to as an episode.
The final state sθ is referred to as the terminal state and is commonly reached
when a halting condition is reached. This formalization is common in any task
related to reinforcement learning [23]. The model we have designed for Street
Fighter II Turbo is as follows:

State A state s ∈ S is defined as a sequence ⟨x1, . . . , x15⟩ of 15 features. It
corresponds to the observations summarized in Table 2. A state is terminal
when one of these three conditions is fulfilled: (1) the health of the first
player is depleted, i.e., health(p1) = 0, (2) the health of the second player
is depleted, i.e., health(p2) = 0, or (3) when the timer is exceeded, i.e.,
remainingTime = 0.

Action An action a ∈ A simply corresponds to an available action proposed
in Table 1. There are then 21 possible actions that the agent can perform
inside the environment.

Transition The transition function updates the current state st according to
the action performed at the time t. The definition of the transition directly
relies on the game mechanisms as executed by the emulator. For instance,
assuming that farStandingJab is an action performed by the first player and
that deals 40 damages to the opponent, the state information st+1 related
to health(p2) get the value health(p2)−40. Internally, the transition between
two states correspond to 7 visual frames.

Reward The goal of the reward is to encourage the agent to perform actions
that will lead it to win the game. A simple way to define the reward is to only
give a positive value when the agent wins the game, and a negative value
when it loses it. This reward signal is defined in Equation (1). It indicates
that an action a perform at a state s is positively rewarded if the next state
is a terminal state corresponding to a victory for the first player. On the
other hand, it is negatively rewarded (i.e. punished) in case of defeat.

Rfinal(st, a) =

1 if health(p1) > health(p2) ∧ isTerminal(st+1)

−3 else if health(p1) < health(p2) ∧ isTerminal(st+1)

0 otherwise
(1)

6 Z. Parham et al.

The values of 1 and -3 have been calibrated manually. The drawback is that
non-zero rewards are collected only at the end of an episode. This yields
the sparse reward issue, which is known to complicate the training process
[21]. We tackle this issue by introducing an intermediate reward, that can
be collected in the middle of an episode. This is also known as a reward
shaping method. The idea is to evaluate the impact of an action on the
remaining health of both players. Intuitively, each health point depleted from
the opponent will be rewarded, and each health point that is inflicted will be
punished. Let ∆health

t (p) = healtht+1(p)− healtht(p) be the difference in the
health for the player p between state st+1 and st, the intermediate reward
is defined in Equation (2).

Rintermediate(st, a) = αwin∆health
t (p2)− αlose∆health

t (p1) (2)

On this equation, αwin is a positive coefficient giving incentive to the agent
to deplete the health of the opponent, and αlose a second coefficient giving it
incentive to not lose health. Based on both equations, the reward function
used in our model is as follows.

R(st, a) = Rintermediate(st, a) +Rfinal(st, a) (3)

4 Learning algorithm

The learning algorithm relies on a deep Q-learning approach [17]. Briefly, the idea
is to estimate the quality of taking an action a from a state s. This estimation is
referred to as a Q-value and is obtained thanks to a trained deep neural network.
In our case, we used a fully-connected neural network of two hidden layers of
64 neurons each together with a ReLU activation [7]. The output is a real value
for each action, corresponding to the Q-value. Once estimated, the agent policy
consists in always selecting the action that has the best Q-value.

Three agents have been designed in this work. Each of them has been trained
between 2,000,000 and 3,000,000 time steps. This corresponds to around 10,000
game sessions and 15 hours of training time on a Intel(R) Xeon(R) CPU @
2.30GHz CPU and a Tesla P100-PCIE-16GB GPU using Adam optimizer [12].
Additionally, the game consists of three episodes (i.e. three rounds) but we only
consider the first one in each game session. Finally, we would like to point out
that building the most efficient agent was not the goal of this project. In contrast,
our goal was to build only a decent agent and to show that its behaviour can be
successfully explained thanks to association rules.

5 Explanation with Association Rules

This section describes the methodology we used to extract information explain-
ing the behaviours of the trained agents. We do it by means of association
rules [1]. Briefly, the idea is to extract relevant correlations from a large database

Explaining the Behavior of Reinforcement Learning Agents 7

T of transactions. In our context, each transaction is defined as a set {I1, . . . , In}
of n items together with a specific item Y . An association rule is defined as an
implication of the form I → Y , where I = {Ij , . . . , Ik} is a subset of existing
items. The goal is to find association rules that are the most frequent in T .
Provided with this information, we can then infer that the item Y is often ob-
tained when the items I are also present. Three metrics are commonly used for
determining how relevant a rule is. There are as follows:

1. The support indicates how frequent a rule is. It is computed as the ratio
between the transactions containing both I and Y with the total number of
transactions in T . It is formalized in Equation (4).

Support(I → Y) =
#
{
t ∈ T

∣∣∣ I ∈ t ∧ Y ∈ t
}

#
{
t ∈ T

} (4)

2. The confidence is the ratio between the transactions containing both I and
Y , with the transactions containing only I. It is formalized in Equation (5).

Confidence(I → Y) =
#
{
t ∈ T

∣∣∣ I ∈ t ∧ Y ∈ t
}

#
{
t ∈ T

∣∣∣ I ∈ t
} (5)

3. The lift measures the performance at predicting the presence of both Y and
I in a transaction against a random prediction. A lift of 1 indicates that the
probability of occurrence of both I and Y are independent. In such a case, no
relevant rule can be drawn involving those items. This measure is formalized
in Equation (6). Intuitively, a lift of 2 shows that the Y of the corresponding
rule is twice more likely to be present compared to the average.

Lift(I → Y) =
#
{
t ∈ T

∣∣∣ I ∈ t ∧ Y ∈ t
}

#
{
t ∈ T

∣∣∣ I ∈ t
}
×#

{
t ∈ T

∣∣∣ Y ∈ t
} (6)

In our case, we opted to find rules maximizing the lift, while ensuring a
minimum support threshold of 0.01 and a minimum confidence threshold of 0.01
as well. There exist many algorithms in the literature for finding association
rules, such as Apriori [2] or its variants [25, 24]. In this work, we propose to use
association rules to explain the behaviour or our agent. To do so, we mapped the
state of the reinforcement learning environment (i.e., information from Table 1)
with the {I1, . . . , In} items, and the actions that are taken (i.e., information from
Table 2) with the Y item. We collected such information by letting the trained
agents play the games 10,000 times. It roughly gives a database T of 100,000
transactions for each agent. One difficulty that arose is that standard association
rule mining algorithms assume that the items have categorical values. It is not the
case of some observations of the environment, such as the remaining health of a
player (health(p)). Although alternative algorithms exist in the literature for such

8 Z. Parham et al.

Table 3: Summary of the discretization performed on the observations.
Modified observation Domain Categorical domain
horizontalCoord(p1) [0, 498]

rightOfP2 : hCoord(p1) > hCoord(p2)
horizontalCoord(p2) leftOfP2 : hCoord(p1) < hCoord(p2)

horizontalDelta(p1, p2) [0, 189] close : [0, 63], middle : [64, 126], far : [127, 189]
verticalCoord(p) [0, 204] jumping : [0, 191], standing : [192, 204]

health(p) [0, 176] low : [0, 58], medium : [59, 117], high : [118, 176]

verticalDelta(p1, p2) [0, 158] Not used (redundant with verticalCoord)
remainingTime [0, 99] Not used (not player-dependant)

a situation [10], we selected the option to discretize each numerical observation
into a set of meaningful categories. The main reason is that categorical data are
easier to interpret. A summary of this discretization is proposed in Table 3. For
instance, the first discretization shows that we have a category rightOf if the
horizontal coordinate of player p1 is higher than the horizontal coordinate of
player p2. The rule extraction has been carried out in R using arules package4

and was executed in less than 30 seconds for each agent.

6 Analysis of the Rules Obtained

This section presents the best rules that we have been able to extract from the
agents we trained. Three agents are presented: a balanced, a defensive, and an
aggressive one. Their differences relates to the reward function that has been
used to define the environment. More details specific to each agent are proposed
in the next subsections.

Rules for a Balanced Agent

The first agent we trained uses the reward function defined in Equation (3) with
αwin = αlose = 1. Intuitively, this agent has an equal incentive to protect its
health and to deplete the health of the opponent, hence its qualification of being
balanced. The progression of the reward during the training phase is illustrated
in Fig. 2. Then, Table 4 shows the top-5 rules obtained, sorted by their lift, and
with the minimum threshold of 0.01 for the support and the confidence. Interest-
ingly, we can see that the agents perform both aggressive (jumpingWithKicking)
and defensive (jumpingForward) actions with a relatively similar lift value. For
instance, an interpretation of the first rule is that the agent is likely to jump
toward the enemy when it is not too far (horizontalDelta(p1, p2) = middle) and
on the left side of the opponent (horizontalCoord(p1) = leftOfP2). The result is
to land behind the opponent, which is a common tactical move for this game.

4 https://github.com/mhahsler/arules/

Explaining the Behavior of Reinforcement Learning Agents 9

Fig. 2: Evolution of the reward during the training for the balanced agent.

Table 4: Top-5 rules obtained for the balanced agent (lift measure).
Rule antecedent (I) Rule consequent (Y) Lift
horizontalDelta(p1, p2) = middle, isMoving(p2) = 1,

jumpingForward 9.34
horizontalCoord(p1) = leftOfP2

isCrouching(p2) = 0, isMoving(p2) = 1,
jumpingBackward 7.34

horizontalCoord(p1) = rightOfP2

verticalCoord(p1) = jumping,
jumpingWithKicking 7.34

isMoving(p1) = 0, horizontalDelta(p1, p2) = far

isCrouching(p2) = 1, isMoving(p2) = 1,
movingBackward 5.97

health(p1) = high, horizontalDelta(p1, p2) = close

horizontalDelta(p1, p2) = close, isJumping(p1) = 0,
crouchingStrong 3.02

isCrouching(p2) = 0, horizontalCoord(p1) = leftOfP2

Rules for a Defensive Agent

As our goal is to assess whether association rules can find relevant rules explain-
ing the behaviour of a reinforcement learning agent, we trained another agent,
which has incentive to protect its health. This is done by setting αwin = 0 and
αlose = 1. Intuitively, the agent does not receive reward anymore if it hits the
opponent, but it still gets punished if it loses health. Provided that our hypoth-
esis is correct, the top rules should be related to more defensive actions. They
are summarized in Table 5. A first observation is that the rules obtained are
highly different than the ones related to the balanced agent. The first top-rule
(crouchingFierce) is an in-between aggressive/defensive action and is obtained
with a high lift value. The second top-rule (movingBackward) is a purely defen-
sive action, which corroborates the fact that the agent is trained to have a more
defensive game-play than the balanced one.

10 Z. Parham et al.

Table 5: Top-5 rules obtained for the defensive agent (lift measure).
Rule antecedent (I) Rule consequent (Y) Lift
isMoving(p1) = 1, health(p2) = medium,

crouchingFierce 31.1isCrouching(p2) = 0, horizontalDelta(p1, p2) = close,
isJumping(p1) = 1, verticalCoord(p2) = standing

isCrouching(p1) = 0, isMoving(p1) = 0, health(p2) = high,

movingBackward 19.27
isJumping(p1) = 0, health(p1) = high,
horizontalDelta(p1, p2) = middle,horizontalCoord(p1) = rightOfP2

isMoving(p1) = 1, isJumping(p1) = 1,
crouchingJab 16.0horizontalDelta(p1, p2) = close, health(p1) = high

verticalCoord(p2) = jumping

isCrouching(p1) = 1, isMoving(p1) = 0,
sitDown 7.03

health(p2) = low, isCrouching(p2) = 0,
isMoving(p2) = 1

isCrouching(p1) = 0, health(p2) = medium,
jumpingWithKicking 5.73horizontalDelta(p1, p2) = close, health(p1) = high,

verticalCoord(p2) = jumping, isMoving(p2) = 1

Rules for an Aggressive Agent

Following the same idea, we performed the same analysis on an aggressive agent.
It has been implemented by setting αwin = 1 and αlose = 0. Intuitively, it still
receives rewards when it hits the opponent, but it is not punished anymore when
it loses health. Provided that our hypothesis is correct, the top rules should be
related to more aggressive actions. They are summarized in Table 6. Compared to
the defensive agents, roughly the same rules are obtained but within a different
importance order. For instance, the second top-rule is now an attack instead
of a defensive move. Another offensive move (jumpingWithKicking) also gains
importance (lift of 12.3 instead of 5.73), showing that the agent is, as intended,
more aggressive than the defensive one.

7 Conclusion and Future Work

Deep reinforcement learning is increasingly considered for driving decision-making
systems. However, the trade-off between the efficiency of a model and its explain-
ability level is a challenge, which is critical for numerous applications. In this
paper, we proposed to use association rules in order to explain the decisions
performed by an agent trained by a deep reinforcement learning algorithm. We
proposed an application, on the StreetFighter Turbo II video game and trained
three agents, each with a specific style of play. The results obtained show that
the playing style of an agent has an impact on the rules obtained and on their
rank. This directly corroborates the hypothesis that association rules can be a
relevant tool to explain the behaviour of reinforcement learning algorithms. Al-
though our application is for the video game industry, the approach proposed is
generic and could be considered for other applications of reinforcement learning.

Explaining the Behavior of Reinforcement Learning Agents 11

Table 6: Top-5 rules obtained for the aggressive agent (lift measure).
Rule antecedent (I) Rule consequent (Y) Lift
isMoving(p1) = 1, health(p2) = medium,

crouchingFierce 39.67isJumping(p1) = 1, isCrouching(p2) = 0, health(p1) = high,
verticalCoord(p2) = standing, horizontalDelta(p1, p2) = close

isMoving(p1) = 1, isJumping(p1) = 1,

crouchingJab 20.29
health(p1) = high, horizontalDelta(p1, p2) = close,
verticalCoord(p2) = jumping, health(p2) = medium,
horizontalCoord(p1) = leftOfP2

isCrouching(p1) = 0, isMoving(p1) = 0,

movingBackward 19.28
health(p2) = high, isJumping(p1) = 0,
health(p1) = high, horizontalDelta(p1, p2) = middle,
horizontalCoord(p) = rightOf

isCrouching(p1) = 0, health(p2) = medium,

jumpingWithKicking 12.3
health(p1) = high, horizontalDelta(p1, p2) = close,
verticalCoord(p2) = jumping, isMoving(p2) = 1,
isJumping(p1) = 0, horizontalCoord(p) = leftOf

isCrouching(p1) = 1, isMoving(p1) = 0,
sitDown 3.96

isCrouching(p2) = 0, isMoving(p2) = 1

However, an important limitation is that the input observations must be intrin-
sically explainable. It is not always the case, especially when the inputs are a
grid of pixels. Targeting this limitation is an interesting line of future work.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between
sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (jun 1993).
https://doi.org/10.1145/170036.170072, https://doi.org/10.1145/170036.170072

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Proc. 20th int. conf. very large data bases, VLDB. vol. 1215, pp. 487–499. Citeseer
(1994)

3. Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi,
D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pa-
chocki, J., Petrov, M., de Oliveira Pinto, H.P., Raiman, J., Salimans, T., Schlatter,
J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., Zhang, S.: Dota
2 with large scale deep reinforcement learning. CoRR abs/1912.06680 (2019),
http://arxiv.org/abs/1912.06680

4. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Research 70, 245–317 (2021)

5. Došilović, F.K., Brčić, M., Hlupić, N.: Explainable artificial intelligence: A survey.
In: 2018 41st International convention on information and communication technol-
ogy, electronics and microelectronics (MIPRO). pp. 0210–0215. IEEE (2018)

6. Fletcher, A.: How we built an AI to play Street Fighter II — can
you beat it? https://medium.com/gyroscopesoftware/how-we-built-an-ai-to-play-
street-fighter-ii-can-you-beat-it-9542ba43f02b, accessed: 2022-11-18

12 Z. Parham et al.

7. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

8. Guss, W.H., Codel, C., Hofmann, K., Houghton, B., Kuno, N., Milani, S., Mohanty,
S.P., Liebana, D.P., Salakhutdinov, R., Topin, N., Veloso, M., Wang, P.: The minerl
competition on sample efficient reinforcement learning using human priors. CoRR
abs/1904.10079 (2019), http://arxiv.org/abs/1904.10079

9. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
conference on machine learning. pp. 1861–1870. PMLR (2018)

10. Hong, T.P., Kuo, C.S., Chi, S.C.: Mining association rules from quantitative data.
Intelligent data analysis 3(5), 363–376 (1999)

11. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaskowski, W.: Vizdoom:
A doom-based AI research platform for visual reinforcement learning. CoRR
abs/1605.02097 (2016), http://arxiv.org/abs/1605.02097

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

14. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks 3361(10), 1995 (1995)

15. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971 (2015)

16. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement
learning through a causal lens. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 34, pp. 2493–2500 (2020)

17. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

18. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J., et al.:
An algorithmic perspective on imitation learning. Foundations and Trends® in
Robotics 7(1-2), 1–179 (2018)

19. Pawar, U., O’Shea, D., Rea, S., O’Reilly, R.: Explainable ai in healthcare. In:
2020 International Conference on Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA). pp. 1–2. IEEE (2020)

20. Puiutta, E., Veith, E.M.: Explainable reinforcement learning: A survey (2020)
21. Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T., Mnih,

V., Heess, N., Springenberg, J.T.: Learning by playing solving sparse reward tasks
from scratch. In: International conference on machine learning. pp. 4344–4353.
PMLR (2018)

22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

23. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

24. Wu, H., Lu, Z., Pan, L., Xu, R., Jiang, W.: An improved apriori-based algorithm for
association rules mining. In: 2009 sixth international conference on fuzzy systems
and knowledge discovery. vol. 2, pp. 51–55. IEEE (2009)

25. Yuan, X.: An improved apriori algorithm for mining association rules. In: AIP
conference proceedings. vol. 1820, p. 080005. AIP Publishing LLC (2017)

